Algebra 2

2-04 Graph Polynomial Functions (4.1, 4.8)

Polynomial in One Variable • Function that has _ variable and there are powers of that variable and all the powers are _

 $4x^3 + 2x^2 + 2x + 5$

 $100x^{1234} - 25x^{345} + 2x + 1$

 $3xy^2$

Degree

2

x

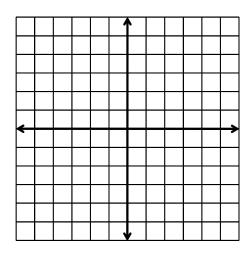
_____ power of the variable •

What is the degree? $4x^3 + 2x^2 + 2x + 5$

Types of Polynomial Functions

Degree	Туре	Example	Graph
0		<i>y</i> = 2	
1		y = 2x + 1	
2		$y = 2x^2 + x - 1$	
3		$y = 2x^3 + x^2 + x - 1$	
4		$y = 2x^4 + 2x^2 - 1$	

End Behavior

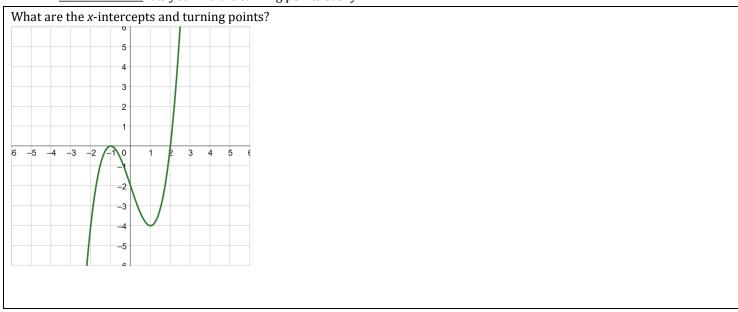

Polynomial functions always go towards at either _____ of the graph or_ Leading Coefficient Leading Co

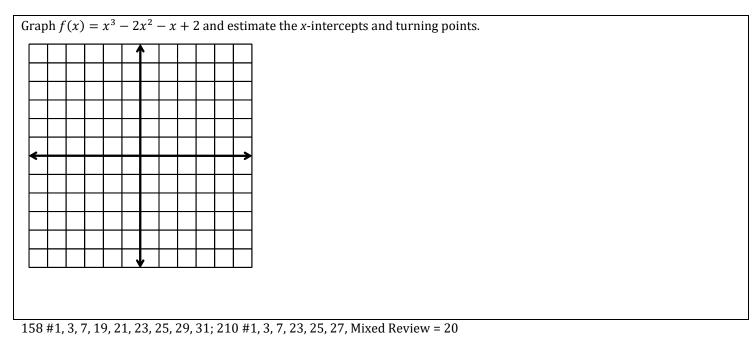
	Leaung coemercie i	
Even Degree		
Odd Degree	\sim	\sim

Graphing polynomial functions

- 1. Make a _____
- 2. _____ the points
- 3. Make sure the graph matches the appropriate _

Graph $f(x) = x^3 + 2x - 4$




Points where the graph crosses the ______

Turning Points

•

- Local ______ and _____ (turn from going up to down or down to up)
- The graph of every polynomial function of degree *n* can have at most ______ turning points.
 - _____ lets you find the turning points easily.

